ZnGeSb2: a promising thermoelectric material with tunable ultra-high conductivity.

نویسندگان

  • P C Sreeparvathy
  • V Kanchana
  • G Vaitheeswaran
  • N E Christensen
چکیده

First principles calculations predict the promising thermoelectric material ZnGeSb2 with a huge power factor (S2σ/τ) on the order of 3 × 1017 W m-1 K-2 s-1, due to the ultra-high electrical conductivity scaled by a relaxation time of around 8.5 × 1025 Ω-1 m-1 s-1, observed in its massive Dirac state. The observed electrical conductivity is higher than the well-established Dirac materials, and is almost carrier concentration independent with similar behaviour of both n and p type carriers, which may certainly attract device applications. The low range of thermal conductivity is also evident from the phonon dispersion. Our present study further reports the gradual phase change of ZnGeSb2 from a normal semiconducting state, through massive Dirac states, to a topological semi-metal. The maximum power factor is observed in the massive Dirac states compared to the other two states.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Atomistic calculations of the electronic, thermal, and thermoelectric properties of ultra-thin Si layers

Low-dimensional semiconductors are considered promising candidates for thermoelectric applications with enhanced performance because of a drastic reduction in their thermal conductivity, κl , and possibilities of enhanced power factors. This is also the case for traditionally poor thermoelectric materials such as silicon. This work presents atomistic simulations for the electronic, thermal, and...

متن کامل

Ultra-low thermal conductivities in large-area Si-Ge nanomeshes for thermoelectric applications

In this work, we measure the thermal and thermoelectric properties of large-area Si0.8Ge0.2 nano-meshed films fabricated by DC sputtering of Si0.8Ge0.2 on highly ordered porous alumina matrices. The Si0.8Ge0.2 film replicated the porous alumina structure resulting in nano-meshed films. Very good control of the nanomesh geometrical features (pore diameter, pitch, neck) was achieved through the a...

متن کامل

Thermoelectric Power Factor of Ultra-Narrow Silicon Nanowires

The thermoelectric performance of materials is determined by the figure of merit ZT=σS2/(κe+κl), where σ is the electrical conductivity, S is the Seebeck coefficient and κe and κl are the electronic and lattice contributions to the thermal conductivity, respectively. The interrelation between these quantities has traditionally kept ZT low, around unity. Nanomaterials have recently attracted sig...

متن کامل

Thin Film Thermoelectric Metal-Organic Framework with High Seebeck Coefficient and Low Thermal Conductivity A new thermoelectric material with high Seebeck coefficient and low thermal conductivity is demonstrated based on an electrically conducting metal–organic framework

Thin Film Thermoelectric Metal-Organic Framework with High Seebeck Coefficient and Low Thermal Conductivity Report Title A new thermoelectric material with high Seebeck coefficient and low thermal conductivity is demonstrated based on an electrically conducting metal–organic framework (MOF) using the guest@MOF concept. This demonstration opens a new avenue for the future development of thermoel...

متن کامل

Full-Band Calculations of Thermoelectric Properties of Si Nanowires and Thin Layers

Low-dimensional semiconductors are considered promising candidates for thermoelectric applications with enhanced performance because of a drastic reduction in their thermal conductivity, κl, and possibilities of enhanced power factors. This is also the case for traditionally poor thermoelectric materials such as silicon. This work presents atomistic simulations for the electronic, thermal, and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 18 37  شماره 

صفحات  -

تاریخ انتشار 2016